Welcome, Guest |
You have to register before you can post on our site.
|
Forum Statistics |
» Members: 466
» Latest member: Charvab
» Forum threads: 1,441
» Forum posts: 2,615
Full Statistics
|
Online Users |
There are currently 41 online users. » 0 Member(s) | 39 Guest(s) Bing, Google
|
Latest Threads |
Bedava Free Fire Hesap
Forum: My Forum
Last Post: Tanitim2025
01-01-2023, 01:02 PM
» Replies: 0
» Views: 0
|
Bedava Pubg Mobile Hesap
Forum: My Forum
Last Post: Tanitim2025
01-01-2023, 12:49 PM
» Replies: 0
» Views: 0
|
Bedava Hesaplar
Forum: My Forum
Last Post: Tanitim2025
10-20-2022, 07:51 AM
» Replies: 0
» Views: 0
|
Film izle
Forum: My Forum
Last Post: Tanitim2025
08-27-2022, 05:16 AM
» Replies: 0
» Views: 0
|
Ehliyet Sınav Soruları
Forum: My Forum
Last Post: Tanitim2025
08-14-2022, 03:13 PM
» Replies: 0
» Views: 0
|
Seo Hizmetleri
Forum: My Forum
Last Post: Tanitim2025
05-22-2022, 02:08 PM
» Replies: 0
» Views: 0
|
شراء عقار في تركيا
Forum: My Forum
Last Post: Tanitim2025
04-30-2022, 11:57 AM
» Replies: 0
» Views: 0
|
Propriété à vendre à Turq...
Forum: My Forum
Last Post: Tanitim2025
04-27-2022, 10:50 AM
» Replies: 0
» Views: 0
|
Apple benefits elma yemen...
Forum: My Forum
Last Post: Tanitim2025
04-16-2022, 10:23 PM
» Replies: 0
» Views: 0
|
CLOUD TÜRKIYE Bulutların ...
Forum: My Forum
Last Post: Tanitim2025
04-13-2022, 04:05 PM
» Replies: 0
» Views: 0
|
|
|
Touch screen |
Posted by: koipdd61 - 02-23-2022, 04:59 AM - Forum: My Forum
- Replies (2)
|
|
A Capacitive Touch Screen is a display device that allows the user to interact with a computer using their finger or stylus. They're a useful alternative to a mouse or keyboard for navigating a GUI (graphical user interface). Touch screens are used on a variety of devices, such as computer and laptop displays, smartphones, tablets, cash registers, and information kiosks. Some touch screens use a grid of infrared beams to sense the presence of a finger instead of utilizing touch-sensitive input.
What computers support a touch screen?
Today, all PCs support the ability to have a Surface Capacitive Touch Screen, and most laptop computers allow users running Microsoft Windows 10 to use a touch screen. Also, many all-in-one computers are capable of using a touch screen. Computer manufacturers with products that have touch screens include Acer, Dell, HP, Lenovo, Microsoft, and other PC manufacturers.
There are also some high-end Google Chromebooks with touch screens. However, to help keep the costs lower, many Chromebooks do not have touch screens.
Any computer device (including a touch screen) that takes input from the person operating the device is considered an input device. The way you use your finger on a Resistive Touch Screen is very similar to how you use a computer mouse on a desktop computer.
How is a touch screen different than a mouse?
A computer mouse and touch screen have many similarities. Many of them are mentioned in the how do you use the touch screen section above.
One of the most significant differences between a mouse and a Raspberry Pi Touchscreen is the ability to hover. Almost all touch screens can only detect input when your finger is in direct contact with the screen. However, a computer mouse uses a cursor that allows the user to view the information by moving the pointer over an object, but not clicking it. For example, this link to Computer Hope shows the text "Visit the Computer Hope Page" when hovered over using a computer mouse. However, a user with a touch screen cannot see this text because if they place their finger on the link, it opens the link.
Why are touch screens used?
Below are the reasons a manufacturer may decide to use a Touch LCD Screen Assembly, instead of another input method, such as physical buttons.
Touch screens are intuitive, especially to younger generations of users.
Having one touch screen instead of several buttons can make a device smaller.
Cheaper to design and manufacture a device with one screen instead of on with a screen and buttons.
Touch screen technologies
Not all LCD Display touch screens are the same. Different technologies can be utilized to allow a user to interact with a screen. Some technologies may work with only your finger, and other technologies may allow other tools, like a stylus. Below is a brief description of each of these technologies.
|
|
|
Grippers |
Posted by: koipdd61 - 02-23-2022, 04:56 AM - Forum: My Forum
- No Replies
|
|
A gripper is a motion device that mimics the movements of people, in the case of the gripper, it is the fingers. A gripper is a device that holds an object so it can be manipulated. It has the ability to hold and release an object while some action is being performed. The fingers are not part of the gripper, they are specialized custom tooling used to grip the object and are referred to as "jaws." Two main types of action are performed by grippers: External: This is the most popular method of holding objects, it is the most simplistic and it requires the shortest stroke length. When the Pneumatic Centering Gripper jaws close, the closing force of the gripper holds that object. Internal: In some applications, the object geometry or the need to access the exterior of the object will require that the object is held from the center. In this case, the opening force of the gripper will be holding the object.
Major Factors in Choosing a Pneumatic Gripper and Jaw Design:
When choosing a pneumatic gripper and jaw design, these ate the major factors to consider: 1. Part shape, orientation, and dimensional variation If the object has two opposing flat surfaces, then 2 Jaw Parallel Gripper is desired since it can handle some dimensional variation. Jaws can also be designed to handle cylindrical objects with the 2 jaw concept. Keep in mind that retention or encompassing grip requires much less force. 2. Part Weight Grip force must be adequate to secure the object while a desired operation is performed on the object. The type of jaw design must be part of the force requirement. Keep in mind that you should add a safety factor to the amount of force that you select and air pressure is a factor to keep in mind. 3. Accessibility This applies both to the work being performed on the object and the amount of room for the gripper jaws. If the work is to the exterior of the object then it may require an internal grip. Angular grippers are usually less expensive but require additional space for jaw movement. 4. Environmental Harsh environments or cleanroom applications require grippers designed for those purposes. 5. Retention of the Object When air pressure is lost, the gripper will relax its grip on the object and the object may be dropped. There are spring assist grippers designed for this type of application.
Choose the right gripper for your automated process
Pneumatic Parallel Gripper
A parallel gripper opens and closes parallel to the object that it will be holding. These are the most widely used grippers. They are the simplest tool and can compensate for some dimensional variation.
Pneumatic Angular Gripper
An Angular gripper moves the jaws in a radial manner to rotate the jaws away from the object. This allows for the jaws to move completely away from the object. The object may also be fed directly into the jaws and possibly eliminate one additional motion.
An end-effector with two mating parts, a Master-side and a Tool-side that have been designed to lock or couple together automatically, carry a payload, and have the ability to pass utilities such as electrical signals, pneumatic, water, etc. Most robot couplers use pneumatics to lock the Master- and Tool-sides together. The Automatic Robotic Tool Changers provide the flexibility for any automated process to change tools and pass various utilities. The Master-side of the Tool Changer mounts to a robot, CNC machine, or other structure. The Tool-side of the Tool Changer mounts to tooling, such as grippers, welders, or deburring tools. A Robot Tool Changer is also known as a Quick-Change device (QC), an automatic tool changer (ATC), robot tool changer, robot coupler, robotic coupler, or robotic connector.
|
|
|
HOW TUBE AND PIPE MILLS WORK |
Posted by: koipdd61 - 02-23-2022, 04:54 AM - Forum: My Forum
- No Replies
|
|
Tube Mill Machine Lines produce pipe and tube by taking a continuous strip of material and continuously roll forms it until the edges of the strip meet together at a weld station. At this point, the welding process melts and fuses the edges of the tube together and the material exits the weld station as welded tube. Basic components include an uncoiler, straightener, shear, forming section, fin pass section, welder, ID and/or OD scarfing, sizing section, cut off and stacker or runout table.Tube formed metals can be used in many different industries, such as gas, water and sewage piping, structural, industrial, and scaffolding piping. Additionally, your Carbon Steel Tube Mill Machine can produce hollow, rectangular, round or square piping.Galvanized Tube Mill Machines produce pipe and tube by taking a continuous strip of material and continuously rollforming until the edges of the strip meet together at a weld station. At this point the welding process melts and fuses the edges of the tube together and the material exits the weld station as welded tube. Basic components include an uncoiler, straightener, shear, forming section, fin pass section, welder, ID and/or OD scarfing, sizing section, cut off and stacker or runout table.
Each pass in the various sections are made up of a upper and lower shaft that contains roller die tooling which forms the steel strip gradually into a round shape or square if it is a form square / weld square type of mill. This gradual shaping process is commonly referred to as the flower arrangement.
ASP can provide you a turn-key solution for all your New, remanufactured and used tube mill needs.
Tube Mill Components operator face a variety of challenges every day in their effort to produce high-quality tubing in a cost-effective and productive way.
This article examines some of the typical problems producers encounter, some common causes of these problems, and some ideas for how to solve these problems.
Lost Mill Time During Operation and Changeovers
Often, excessive downtime during normal operation or tooling/job changeover can be attributed to one or more of the following causes:
1. No written procedures for setup. Every mill should have written procedures for all operators to follow. The machine, tooling, and steel are fixed factors in the mill setup equation; the only variable is the human factor. This is why it is so important to have written procedures in place to control the process. Written procedures also provide a tool for troubleshooting when problems arise.
2. No setup chart. Tweaking the Cold Rolling Mill during setup loses valuable setup time. Operators must work the tooling the way it was designed. This means setting up to the parameters of a setup chart.
|
|
|
Effect of a herbal extract powder |
Posted by: koipdd61 - 02-23-2022, 04:51 AM - Forum: My Forum
- No Replies
|
|
Consequently, the production of dried extracts implies long new product development times. Therefore, the goal of this paper was to: (a) provide recommendations as initial production point of fruit powder suitable for DC by spray drying and (b) study the powder properties to identify those that are affected by the extract nature. Particularly, a unique set of operating conditions was found to be appropriate to produce powders of seven different medicinal plant extracts. In fact, all the spray-dried products showed adequate flowability, stability and compactability.
Fermented plant extract (FPE) is a kind of plant functional food fermented by various microorganisms to make a beverage or other physical forms. To provide technical support for the industrial production of gynostemma extract powder, the quality characteristics of fermented plant extract prepared by hot air-drying, spray drying, vacuum microwave drying, and freeze-drying are compared for an FPE product. The effects of maltodextrin, soluble starch, and β-cyclodextrin as a drying agent on drying effect were studied. Results show that spray-dried FPE powder has the highest bulk density, the smallest average particle size, while the vegetable powder produced by freeze-drying has the best color and flavor, the highest content of key components including total sugar, soluble protein, vitamin C, total polyphenol content, and highest antioxidant capacity.
Nature has always been, and still is, a source of foods and ingredients that are beneficial to human health. Nowadays, plant extracts are increasingly becoming important additives in the food industry due to their antimicrobial and antioxidant activities that delay the development of off-flavors and improve the shelf life and color stability of food products. Due to their natural origin, they are excellent candidates to replace synthetic compounds, which are generally considered to have toxicological and carcinogenic effects. The efficient extraction of these compounds from their natural sources, along with the determination of their activity in the commercialized products, have been great challenges for researchers and food chain contributors to develop products with positive effects on human health. The objective of this Special Issue is to highlight the existing evidence regarding the various potential benefits of the consumption of plant extracts and plant extract-based products, with emphasis on in vivo works and epidemiological studies, the application of plant extracts to improve shelf-life, the nutritional and health-related properties of foods, and the extraction techniques that can be used to obtain bioactive compounds from plant extracts.
YY-312 is a acer truncatum bunge extract from Imperata cylindrical Beauvois, Citrus unshiu Markovich, Evodia officinalis Dode [16]. These plants have been commonly used as medicinal herbs in Korea, and have been reported to have health promoting effects, including reduction of body fat. Evodiamine, a major alkaloidal compound extracted from Evodia officinalis Dode, was thought to elicit anti-obesity effects through uncoupling protein-1 (UCP1) thermogenesis, but it was also suggested to have the potential to prevent obesity by inhibiting adipocyte differentiation through stimulating the extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway [17]. Citrus unshiu Markovich, the peel of immature citrus fruit in the Rutaceae family, is known to have plenty of flavonoids [18]. Citrus peel extracts have been reported to exert an anti-obesity effect through the promotion of β-oxidation and lipolysis in adipose tissue [19]. Imperata cylindrical Beauvois, the root of cogongrass in the Poaceae family, is known to have potent anti-oxidant activity due to its abundant polyphenols [20].
|
|
|
Nuts, bolts, screws, and washers |
Posted by: koipdd61 - 02-23-2022, 04:49 AM - Forum: My Forum
- No Replies
|
|
This chapter starts with tips on drawing hexagon nuts and hex bolts and comprehensively covers, using illustrations, tables of size and explanations on usage, the majority of metric fixings and fasteners used in engineering today i.e. screws of the Hexagon Socket type such as Cap Head Screws, Shoulder Screws, Button Head Screws, Countersunk Head Screws and Set Screws. Machine Screws such as Phillips and Slotted Pan Head, Countersunk and Raised Countersunk Head, Slotted Cheese Head are also included as are Machine Screw Nuts, Wing Nuts and Locking and Retaining Devices such as Slotted Nuts and Castle Nuts Simmonds Locknut, Spring Washers, Shakeproof Washers, Wire Locking, Tab Washers, Locking Plates, Taper and Parallel Pins, Split Cotter Pins, locking by Adhesives and Peening. Finally thread cutting screws are covered with recommendations on installation.
A bolt, as you may recall, is a parallel-sided shaft with an inclined plane or helical groove wrapped around it. A screw bolt is similar except that its sides are tapered, not parallel. Alternatively, one could say that a screw is cone shaped while a bolt is cylindrical. This fine distinction between a bolt and a screw is not appreciated by most people, who might believe that screws are little fasteners tightened with a screwdriver while bolts are larger fasteners tightened with a wrench. No matter how you view them, bolts and screws have much in common. Both stretch a bit while being tightened, both spread the load over several threads, and both will break if over tightened. Screws, however, unlike bolts, cut their own mating thread as they are tightened. This is a key difference from a bolt, which must have a machine-threaded mating hole. Furthermore, repeated removal and reinsertion will cause the screw hole to become just a bit larger in diameter. After too many cycles, the hole no longer fits the screw (sometimes termed hole “wearout”) and we must employ some remediation technique—see “Remediating Hole ‘Wearout’.”
Screws are often categorized in terms of application (wood, sheet metal, drywall, concrete, etc.); head configuration; and sometimes (when it's uncommon) driving method. Button-head sheet metal, roundhead wood, flathead drywall, and TORX-head cabinet screws are but a few common examples. Head descriptions such as pan, button, truss, and oval confuse most people, and for good reason. Each description evokes different mind pictures for different people—my pan probably isn't shaped like your pan, and would that be a saucepan or a sauté pan? What is a “fillister” and what does it look like, and just what exactly is a cabinet screw anyway?
, a nut and “machine screw” might be used in place of the original screw. In desperation, resort to any of a number of specialty devices intended to mount sheet metal and provide a captured machine screw joint.Washers
Washers were originally used for three purposes—to spread the compressive load or anchoring pressure over a larger load-bearing area, to relieve friction, or to prevent leakage. Common flat washers are, as the name implies, a flat disk, usually round and with a hole in the middle, made of metal, plastic, rubber, or leather. Their thickness allows the relatively small diameter head of a fastener, such as a screw or small bolt, to spread its compressive force over a larger diameter (approximately that of the washer's outside diameter) thus reducing stress at the edges of the mounting hole. For example, a printed circuit board could be fastened to a standoff with a screw and a flat washer. The washer spreads the pressure of the screw over a larger area than just the screw head, thus preventing the board from cracking. “Thrust washers” absorb friction between shaft-mounted components by acting as an intermediate or buffer piece between two rotating parts. Thrust washers are often used inside motors and in linear mechanical assemblies as spacers. Washers used as seals around immersion heaters and in water lines are familiar to just about every biomed in the field.
|
|
|
Intraoperative Invasive Blood Pressure Monitoring and the Potential Pitfalls |
Posted by: koipdd61 - 02-23-2022, 04:46 AM - Forum: My Forum
- No Replies
|
|
Invasive intraarterial blood pressure measurement is currently the gold standard for intraoperative hemodynamic monitoring but accurate systolic blood pressure (SBP) measurement is difficult in everyday clinical practice, mostly because of problems with hyper-resonance or damping within the measurement system, which can lead to erroneous treatment decisions if these phenomena are not recognized. A hyper-resonant blood pressure trace significantly overestimates true systolic blood pressure while underestimating the diastolic pressure. Invasively measured systolic blood pressure is also significantly more affected than mean blood pressure by the site of measurement within the arterial system. Patients in the intraoperative period should be treated based on the invasively measured mean blood pressure rather than the systolic blood pressure. In this review, we discuss the pros/cons, mechanisms of Disposable IBP Transducers, and the interpretation of the invasively measured systolic blood pressure value.
Introduction & Background
Disposable IBP Transducer Kit-Single Channel is the gold standard of arterial pressure measurement in 10-20% of high-risk patients [1-2]. In the remaining 80%-90% of surgical patients, the standard intermittent non-invasive blood pressure (BP) that is obtained using oscillometry with a brachial cuff has been shown to have only poor agreement with IBP in critically ill patients [3-4]. These observed measurement differences are clinically significant because they would have triggered a change in treatment in as many as 20% of the critical care patients. Non-invasive oscillometric BP measurement with a brachial cuff tends to, on average, overestimate BP during hypotension and underestimate BP during hypertension, with a significant bias and considerable scatter. Invasive BP measurement with an arterial catheter, providing continuous BP measurements, detected nearly twice as many episodes of hypotension as intermittent oscillometric measurements with a brachial cuff [5]. Continuous rather than intermittent hemodynamic monitoring is highly desirable in high-risk patients. Even when continuous BP monitoring was accomplished in medium-risk patients with non-invasive techniques, the number of episodes of intraoperative hypotension was still reduced by half when compared to intermittent monitoring with a brachial cuff [6]. Although non-invasive continuous monitoring has fewer complications than arterial cannulation, it has not yet Disposable IBP Transducer Kit-Double Channel as the gold standard in high-risk patients, but rather serves as an alternative in low and medium-risk patients where IBP measurements are not warranted [7].
How is IBP measured?
Disposable IBP Transducer Kit-Triple Channel, in essence, replaces a small part of the wall of an artery with a stiff membrane inside a pressure transducer. To achieve this, it requires the cannulation of an artery with a stiff short catheter and the use of a short and stiff tube to connect the cannula to the transducer. In order to measure pressure, a hydrostatic reference level needs to be defined - usually, this is the level of the right atrium - and the transducer needs to be kept at the correct reference level all the time. Each component of the measurement system - transducer, hydrostatic leveling, cannula, tubing - will introduce inaccuracies or measurement errors.
|
|
|
Understanding Laser Cutting |
Posted by: koipdd61 - 02-23-2022, 04:44 AM - Forum: My Forum
- No Replies
|
|
While each cutting process has its advantages and disadvantages, this article focuses on laser cutting, outlining the basics of the laser cutting process and the necessary components and mechanics of the CNC laser cutting machine. Additionally, the article explores various laser cutting methods and applications, the benefits and limitations of the process, and comparisons between laser cutting and other types of cutting processes.
The Laser Cutting Machine and Process
Laser cutting is a non-contact, thermal-based fabrication process suitable for metal and non-metal materials. For the laser cutting process to run smoothly and at optimum capacity, several factors should be taken into consideration, such as the flatbed CNC laser cutting machine’s configuration and settings, the material being cut and its properties, and the type of laser and assist gas employed.
Chemical Degradation: Chemical degradation is employed by high end laser cutting machine and is suitable for laser cutting thermoset polymers and organic material, such as wood. As thermoset and organic materials do not melt when heat is applied, the laser beam burns the material instead, reducing it to carbon and smoke.
Evaporation Cutting: Evaporation cutting is employed by CO2 laser cutting machines and is suitable for materials such as laser cutting acrylic and polyacetal due to the closeness of their melting and boiling points. Since the laser evaporates material evaporates along the cut, the edge produced is generally glossy and polished.
Once the localized heating, melting, or vaporizing has started, the machine moves the area of material removal across the workpiece to produce the full cut. The machine achieves the movement either by adjusting the reflective mirrors, controlling the laser cutting head, or manipulating the workpiece. There are three different configurations for low power laser cutting machine, defined by the way in which the laser beam moves or is moved over the material: moving material, flying optics, and hybrid laser cutting systems.
Hybrid: Hybrid high power laser cutting machine offer a combination of the attributes found on moving material and flying optics machines. These machines feature a material handling table that moves on one axis (usually the X-axis) and a laser head that moves on another (usually the Y-axis). Hybrid systems allow for more consistent beam delivery, and reduced power loss and greater capacity per watt compared to flying optics systems.
|
|
|
The playing card factory |
Posted by: koipdd61 - 02-23-2022, 04:42 AM - Forum: My Forum
- No Replies
|
|
Mr. Russell proposed to his partners that they embark upon the manufacture of playing cards, an industry monopolized by several East Coast companies. The partners agreed and arrangements were made to add two additional stories to their building, making it six stories high. Many new machines were designed and built expressly for Russell, Morgan & Co. The first deck of playing cards was completed on June 28, 1881. About 20 employees manufactured 1600 packs per day.
The company acquired Heraclio Fournier, S.A., the poker playing cards manufacturer in Europe. In 1987, The United States Playing Card Company acquired Arrco Playing Card Company, the third largest playing card manufacturer in the country. International Playing Card Company, a Canadian subsidiary of The United States Playing Card Company since 1914, maintained its own manufacturing operation from 1928 to 1991. Currently, International Playing Card Company is a sales and marketing organization located in Ontario. The United States Playing Card Company was acquired by a series of new owners: Diamond International in 1969, Jessup & Lamont in 1982, Frontenac in 1989.
Introduction into Europe
Playing cards first entered Europe in the late 14th Century, probably from Mamluk Egypt, with suits very similar to the tarot suits of Swords, Staves, Cups and Coins (also known as Disks, and Pentacles) and those still used in traditional Italian, Spanish and Portuguese decks. The first documentary evidence is a ban on their use in 1367, Bern, Switzerland. Wide use of foil playing cards in Europe can, with some certainty, be traced from 1377 onwards.
The Master of the barcode playing cards worked in Germany from the 1430s with the newly invented printmaking technique of engraving. Several other important engravers also made cards, including Master ES and Martin Schongauer. Engraving was much more expensive than woodcut, and engraved cards must have been relatively unusual.
In the 15th Century in Europe, the suits of advertising playing cards varied; typically a deck had four suits, although five suits were common and other structures are also known. In Germany, hearts (Herz/Rot), bells (Schellen), leaves (Grün), and acorns (Eichel) became the standard suits and are still used in Eastern and Southeastern German decks today for Skat, Schafkopf, Doppelkopf, and other games. Italian and Spanish cards of the 15th century used swords, batons (or wands), cups, and coins (or rings). The Tarot, which included extra trump cards, was invented in Italy in the 15th century.
|
|
|
Choosing the right crusher |
Posted by: koipdd61 - 02-23-2022, 04:39 AM - Forum: My Forum
- No Replies
|
|
A Crushing Equipment is a machine that uses mechanical energy to break blocks of stone, concrete, or other building materials into smaller blocks of a specific grain size. They are particularly used in the mining industry to reduce the size of ore blocks and facilitate their processing. Crushers are designed to receive blocks of a maximum size. It may be necessary to go through several crushing steps to obtain the desired end product.Stone Crushers use a rudimentary and reliable technology that does not require much maintenance or engineering knowledge. They are the most popular crushers in the world. Jaw crushers are particularly suitable when the main objective is to reduce large blocks into smaller pieces that can then be processed by other machines.
An Agitation Tank is a machine used in a tank for mixing various process media together. Media include all liquid types, gases & solids (such as salts, powders, granules etc). In summary, it works by rotating an impeller to impart energy to the media which interact and mix. The components of an agitator, in general, are the motor & gearbox, shaft & impellers selected for the duty.
What is the purpose of an agitator?
An Agitator is used for mixing different process media – liquids, gases and solids in chemical addition or Pharmaceutical Ingredients. The agitator imparts energy through mechanical mean by rotating a shaft on which there is an impeller designed specifically for the duty. This could be axial pumping, gas induction, flocculating, high viscosity products, high & low shear mixing etc. An agitator is also used in the Water Industry for adding various chemicals to bring the source water up to drinking water standards
An angle Grinding Equipment is a handheld power tool that can be used for a variety of metal fabrication jobs that include cutting, grinding, deburring, finishing and polishing. The most common types of angle grinders are powered by electricity; either corded or battery powered.
Which abrasives discs you select to use with your angle grinder depends entirely on your specific application and the material you are working with. Read on for more on this.
Flotation Machines constitute the basic equipment for useful minerals reco- very from non-ferrous ores and other raw materials by flotation. In the years 1963- 1976, the Institute of Non-Ferrous Metals developed a series of pneu-mo-mechanical flotation machines, which were marked by letters Iz. They were multi-cell, sluice-type machines of the individual cell volume ranging between m° and 30 m'- 1z-1, 1Z-3, 1Z-5, 1Z-12, IZ-30. They were widely used in the copper, zinc-lead and coal mining industries. The IZ-12 type still
Vibration Screens are equipment used to separate and transport granulated materials in various processes throughout the mining, agriculture, pharmaceutical, food,and chemical industries. Although vibrating screens have many applications, problems such as adhesion, clogging, corrosion, wear, and uneven feed distribution are still quite common. These problems are strongly related to the productivity of the process, and minimizing those problems usually results in financial, productivity and time benefits.
In applications where increasing productivity is desired, maximizing throughput is the typical focus. In this sense, it is essential that the equipment yields not only a high throughput (i.e., a substantial amount of graded granular material) but also a high capacity to separate particles into different sizes, that is, a high efficiency. The analysis of vibrating screen design efficiency is therefore very important when designing or choosing the proper equipment for certain processes.
Kilns are insulated chambers that use fuel or electricity to reach high temperatures. When something is heated in a kiln it is described as being ‘fired’. There are different types of kiln to fire different materials. For example, there are kilns designed specifically for ceramics, glass, metal, brick, metal clay, and enamels.
|
|
|
Printed Circuit Board Introduction & PCB Types |
Posted by: koipdd61 - 02-23-2022, 04:37 AM - Forum: My Forum
- No Replies
|
|
Although Metal Core PCBs are most often associated with computers, they can be found in many other electronic devices, such as TVs, Radios, Digital cameras and Cell phones. In addition to their use in consumer electronics and computers, different types of PCBs are used in a variety of other fields, including:3. Lighting. As LED-based lighting solutions catch on in popularity because of their low power consumption and high levels of efficiency, so too does aluminum-backed PCB which is used to make them. These PCBs serve as heat sinks and allow for higher levels of heat transfer than a standard PCB. These same aluminum-backed HDI Circuits form the basis for both high-lumen LED applications and basic lighting solutions.
4. Automotive and aerospace industries. Both the automotive and aerospace industries make use of flexible PCB, which is designed to withstand the high-vibration environments that are common in both fields. Depending on specifications and design, they can also be very lightweight, which is a necessity when manufacturing parts for transportation industries. They are also able to conform to the tight spaces that might be present in these applications, such as inside instrument panels or behind the instrument gauge on a dashboard.
Multilayer PCBs consist of a series of three or more double-layered PCBs. These boards are then secured together with a specialized glue and sandwiched between pieces of insulation to ensure that excess heat doesn't melt any of the components. Multi-layer PCBs come in a variety of sizes, going as small as four layers or as large as ten or twelve. The largest multi-layer PCB ever built was 50 layers thick.
With many layers of printed circuit boards, designers can make very thick, complex designs which are suitable for a broad range of complicated electrical tasks. Applications where multi-layer PCBs would be beneficial include File servers, Data storage, GPS technology, Satellite systems, Weather analysis and Medical equipment.
Unlike rigid PCBs, which use unmoving materials such as fiberglass, Flexible PCB is made of materials that can flex and move, such as plastic. Like rigid PCBs, flexible PCBs come in single, double or multilayer formats. As they need to be printed on a flexible material, flexible pcb cost more for fabrication.
Rigid Flex PCB
Rigid flex circuits combine the best of both worlds when it comes to the two most important overarching types of PCB boards. Flex-rigid boards consist of multiple layers of flexible PCBs attached to a number of rigid PCB layers.
Rigid-Flex PCBs have many advantages over just using rigid or flexible PCBs for certain applications. For one, rigid-flex boards have a lower parts count than traditional rigid or flexible boards because the wiring options for both can be combined into a single board. The combination of rigid and flexible boards into a single rigid-flex board also allows for a more streamlined design, reducing the overall board size and package weight.
Flex-rigid PCBs are most often found in applications where space or weight are prime concerns, including Cell phones, Digital cameras, Pacemakers and Automobiles.
High-frequency PCB
High Frequency PCB refers to a general PCB design element, rather than a type of PCB construction like the previous models. High-frequency PCB is designed to transmit signals over one gigahertz.
|
|
|
|