MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
Titanium is the perfect metal to make replacement human body parts

Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Titanium is the perfect metal to make replacement human body parts
#1
Titanium material is expensive and can be problematic when it comes to traditional processing technologies. For example, its high melting point (1,670℃, much higher than steel alloys) is a challenge.
The relatively low-cost precision of 3D printing is therefore a game-changer for titanium. 3D printing is where an object is built layer by layer and designers can create amazing shapes.
This allows the production of complex shapes such as replacement parts of a jaw bone, heel, hip, dental implants, or cranioplasty plates in surgery. It can also be used to make golf clubs and aircraft components.
The CSIRO is working with industry to develop new technologies in 3D printing using titanium. (It even made a dragon out of titanium.)

Titanium weighs about half as much as steel but is 30% stronger, which makes it ideally suited to the aerospace industry where every gram matters.
In the late 1940s the US government helped to get production of titanium going as it could see its potential for “aircraft, missiles, spacecraft, and other military purposes”.
Titanium has increasingly become the buy-to-fly material for aircraft designers striving to develop faster, lighter and more efficient aircraft.
About 39% of the US Air Force’s F22 Raptor, one of the most advanced fighter aircraft in the world, is made of titanium.
Titanium forgings refer to products manufactured by the process of shaping metal utilizing compressive forces. The compressive forces used are generally delivered via pressing, pounding, or squeezing under great pressure. Although there are many different kinds of forging processes available, they can be grouped into three main classes:
Forging produces pieces that are stronger than an equivalent cast or machined part. As the metal is shaped during the forging process, the internal grain deforms to follow the general shape of the part. This results in a grain that is continuous throughout the part, resulting in its high strength characteristics. Forgings are broadly classified as either cold, warm or hot forgings, according to the temperature at which the processing is performed.
Iron and steel are nearly always hot forged, which prevents the work hardening that would result from cold forging. Work hardening increases the difficulty of performing secondary machining operations on the metal pieces. When work hardening is desired, other methods of hardening, most notably heat treating, may be applied to the piece. Alloys such as aluminum and titanium that are amenable to precipitation hardening can be hot forged, followed by hardening. Because of their high strength, forgings are almost always used where reliability and human safety are critical such as in the aerospace, automotive, ship building, oil drilling, engine and petrochemical industries.
For more information or to receive a prompt aluminum price quote, please contact us at 800 398-4345 or submit the Request Information form on the right side of this page.
Titanium rod and bar are made from a corrosion-resistant material that has one of the highest strength-to-weight ratios of all metals. Due to the wear resistance, corrosion resistance, high-temperature resistance, and non-magnetic properties of titanium rods, it is used in the main parts of equipment, shaft body, solid parts, mixing shaft, etc.
Titanium Rods’ Characteristics
The density of Titanium pipe and tube is significantly lower than steel, copper, or nickel products. Despite their low density, they are very strong and rigid when compared to other alloy components.
2. Resistant to Corrosion
After atomisation, Titanium powder is traditionally collected in a cyclone system. These powders are typically non-passivated. The transfer of these non-passivated powders from the atomisation cyclone to ancillary process containers is considered to present a high risk of thermal runaway, which may require breaking of the inert gas seal and exposure to oxygen with high potential for powder aspiration. To overcome this problem, non-passivated powder requires exposure to air (or a reactive gas) to passivate at room temperature, a very time consuming and potentially dangerous process. As an example, passivation of 215 kg of aluminium powder was conducted in a powder collection canister after atomisation, requiring a 20 hour cool down (below MIT), followed by a 1.5 hour passivation period [3]. While canisters can be isolated and moved for passivation, this process concentrates a large quantity of nascent surface powders (i.e. highly reactive) in a confined vessel, which is not ideal.
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)