09-24-2021, 08:04 AM
The online monitoring equipment installed on the high-voltage power bus is supported by reliable and stable DC power, which cannot be obtained from industrial low-voltage AC power or chemical battery. This paper presents a circuit based on the principle of electromagnetic induction to obtain low-voltage low-power DC power supply from high voltage power supply bus. The circuit consists of energy-acquired coil, the rectifier and regulator circuit, and the shunt coils. This power supply can work with small current in the bus, also it can output stable DC voltage in the case of large current in the bus by starting shunt coil. The experimental data indicates that the output voltage of the power supply are 3.3 V and 5 V, the output power is greater than 120 mW and the bus starting current is less than 5A, all these can suffice for the online monitoring equipment.
With the rapid development of the world’s aerospace technologies, a high-power and high-reliability space high-voltage power supply is significantly required by new generation of applications, including high-power electric propulsion, space welding, deep space exploration, and space solar power stations. However, it is quite difficult for space power supplies to directly achieve high-voltage output from the bus, because of the harshness of the space environment and the performance limitations of existing aerospace-grade electronic components. This paper proposes a high-voltage power supply module design for space welding applications, which outputs 1 kV and 200 W when the input is 100 V. This paper also improves the efficiency of the high-voltage converter with a phase-shifted full-bridge series resonant circuit, then simulates the optimized power module and the electric field distribution of the high-voltage circuit board.
The flexible combination of power supply modules for different space high-voltage applications is a well approach to solve the design problems of space high voltage rectifier block. Power supply modules can solve the problems in performance limitations of aerospace-grade devices in space high-voltage applications, and make it easier to carry out insulation protection. Therefore, space power module is very important in space high-voltage systems.
This means that approvals for new lines have slowed, and grid companies are unlikely to meet their targets for new ones.
Chinese grid companies have pursued Ultra High Voltage projects to solve a logistical dilemma: coal, hydro, wind, and solar resources are concentrated in the interior, but the heaviest energy demand is along the urbanised east coast.
In normal high voltage rectifier assembly, a lot of the power is lost as it’s moved across China’s enormous terrain. The benefit of UHV lines is that they have dramatically reduced losses.
China has deployed two types of UHV line. Direct current (UHVDC) lines suit transmission from A to B over distances of more than 1,000 kilometres; whereas alternating current (UHVAC) lines work better over slightly shorter distances but permit branching links along the way.Ultra high voltage multiplier lines successfully transported 172.5 TWh of renewable energy in 2016, or 3.2% of national power consumption. However, 93% of that power came from five lines used for hydropower only.
Some of China’s non-hydro lines have relied less on renewables than supporters had hoped. Caixin Energy reports that, according to experts at State Grid, renewable shares in lines planned to take a coal-renewable mix should target 30%. Three such lines were in operation for at least part of 2016. Their performance was uneven. Ningdong-Zhejiang carried 29% renewables, and the Southern Hami-Zhengzhou line’s share was at 23%, but Ximeng-Jinan took none at all.
With the rapid development of the world’s aerospace technologies, a high-power and high-reliability space high-voltage power supply is significantly required by new generation of applications, including high-power electric propulsion, space welding, deep space exploration, and space solar power stations. However, it is quite difficult for space power supplies to directly achieve high-voltage output from the bus, because of the harshness of the space environment and the performance limitations of existing aerospace-grade electronic components. This paper proposes a high-voltage power supply module design for space welding applications, which outputs 1 kV and 200 W when the input is 100 V. This paper also improves the efficiency of the high-voltage converter with a phase-shifted full-bridge series resonant circuit, then simulates the optimized power module and the electric field distribution of the high-voltage circuit board.
The flexible combination of power supply modules for different space high-voltage applications is a well approach to solve the design problems of space high voltage rectifier block. Power supply modules can solve the problems in performance limitations of aerospace-grade devices in space high-voltage applications, and make it easier to carry out insulation protection. Therefore, space power module is very important in space high-voltage systems.
This means that approvals for new lines have slowed, and grid companies are unlikely to meet their targets for new ones.
Chinese grid companies have pursued Ultra High Voltage projects to solve a logistical dilemma: coal, hydro, wind, and solar resources are concentrated in the interior, but the heaviest energy demand is along the urbanised east coast.
In normal high voltage rectifier assembly, a lot of the power is lost as it’s moved across China’s enormous terrain. The benefit of UHV lines is that they have dramatically reduced losses.
China has deployed two types of UHV line. Direct current (UHVDC) lines suit transmission from A to B over distances of more than 1,000 kilometres; whereas alternating current (UHVAC) lines work better over slightly shorter distances but permit branching links along the way.Ultra high voltage multiplier lines successfully transported 172.5 TWh of renewable energy in 2016, or 3.2% of national power consumption. However, 93% of that power came from five lines used for hydropower only.
Some of China’s non-hydro lines have relied less on renewables than supporters had hoped. Caixin Energy reports that, according to experts at State Grid, renewable shares in lines planned to take a coal-renewable mix should target 30%. Three such lines were in operation for at least part of 2016. Their performance was uneven. Ningdong-Zhejiang carried 29% renewables, and the Southern Hami-Zhengzhou line’s share was at 23%, but Ximeng-Jinan took none at all.