MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
The performance of a centrifugal fan with enlarged impeller

Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
The performance of a centrifugal fan with enlarged impeller
#1
The influence of enlarged impeller in unchanged volute on G4-73 type centrifugal fan performance is investigated in this paper. Comparisons are conducted between the fan with original impeller and two larger impellers with the increments in impeller outlet diameter of 5% and 10% respectively in the numerical and experimental investigations. The internal characteristics are obtained by the numerical simulation, which indicate there is more volute loss in the fan with larger impeller. Experiment results show that the flow rate, total pressure rise, shaft power and sound pressure level have increased, while the efficiency have decreased when the fan operates with larger impeller. Variation equations on the performance of the operation points for the fan with enlarged impellers are suggested. Comparisons between experiment results and the trimming laws show that the trimming laws for usual situation can predict the performance of the enlarged fan impeller with less error for higher flow rate, although the situation of application is not in agreement. The noise frequency analysis shows that higher noise level with the larger impeller fan is caused by the reduced impeller–volute gap.
An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS) solver is used to simulate the rotating stall phenomenon in a plastic centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.
Aerodynamic noise is mainly caused by vortex and flow separation. So the unsteady behavior of rotating stall may have an influence on the noise of centrifugal fan. In capturing the physical mechanism of the fan noise associated with rotating stall, the primary work is to characterize the noise. During the 1960s, the interaction between noise and turbulence was discussed by Powell, and the vortex sound theory was proposed to explain the generation of acoustic sound. Then, Lighthill made a breakthrough in aerodynamic noise theory research by proposing the acoustic analogy [11]. Based on these works, Díaz et al. put forward a prediction of the tonal noise generation in an axial flow fan, and the noise level in the plastic centrifugal blower far-field region was estimated by means of acoustic analogy [12]. Scheit et al. analyzed the far-field noise in a metal centrifugal fan with an acoustic analogy method and presented design guidelines to optimize the radiated noise of the impeller [13]. The global control of subsonic axial fan at the blade passing frequency was also discussed by Gérard et al. [14]. He aimed at cancelling the tonal noise by using a single loudspeaker in front of the fan with a single-input-single-output adaptive feedforward controller. According to Ouyang et al.’s work, the far-field noise generated by cross-flow fan with different impellers was measured and it showed the great influence of blade angles on the inflow pattern [15]. Based on the previous research, a new method to predict the fan noise and performance is developed by Lee et al., and through an acoustic analogy, the acoustic pressures from the unsteady force fluctuations of the blades are obtained [16].
The configuration of range hood centrifugal fan studied in this work is shown in Figure 1. It is composed of current collector, impeller with 12 airfoil blades, and the volute. The inlet and outlet diameter of the impeller are 568 mm and 800 mm, respectively. The inlet and outlet width of impeller are 271 mm and 200 mm, respectively. The nominal rotation speed is 1450 rpm. The volute tongue gap is 1% of the impeller outlet diameter. The width of the rectangular volute is 520 mm, and a simple antivortex ring is set inside the volute to reduce the generation of vortex. At the design operating point, the volume flow is 6.32 m3/s and the full pressure is 1870 Pa.
Reply


Messages In This Thread
The performance of a centrifugal fan with enlarged impeller - by ddfs3v - 08-26-2021, 03:03 AM

Forum Jump:


Users browsing this thread: 2 Guest(s)