09-02-2021, 07:58 AM
A ball valve is a shut off valve that controls the flow of a liquid or gas by means of a rotary ball having a bore. By rotating the ball a quarter turn (90 degrees) around its axis, the medium can flow through or is blocked. They are characterized by a long service life and provide a reliable sealing over the life span, even when the valve is not in use for a long time. As a result, they are more popular as a shut off valve then for example the gate valve. For a complete comparison, read our gate valve vs ball valve article. Moreover, they are more resistant against contaminated media than most other types of valves. In special versions, ball valves are also used as a control valve. This application is less common due to the relatively limited accuracy of controlling the flow rate in comparison with other types of control valves. However, the valve also offers some advantages here. For example, it still ensures a reliable sealing, even in the case of dirty media. Figure 1 shows a sectional view of a ball valve.
Locating water pipes in exterior walls should be avoided. If pipes are located in exterior walls, in addition to insulating the pipe, the homeowner should ensure that as much cavity insulation as possible is installed between the pipe and the outer surface of the wall. In cold climates, having pipes in unconditioned attics should be avoided. The image above is of uninsulated water supply pipes in an unconditioned basement.
Insulating water pipes can save energy by minimizing heat loss through the piping. Insulating pipes will reduce the risk of condensation forming on the pipes, which can lead to mold and moisture damage. Insulation pipe can protect the pipes from freezing and cracking in the winter, which can cause considerable damage in the walls of the home and result in significant home repair bills for the homeowner. Studies by the Department of Energy (DOE’s) Building America program have shown that distribution heat loss in uninsulated hot water pipes can range from 16% to 23%, depending on the climate. Adding 3/4-inch pipe insulation can cut overall water heating energy use by 4% to 5% annually.
Insulated copper coil is one of the main aspects of many of Joseph Henry’s experiments in the field of Electricity and Magnetism is the large coils or helices of copper wire or ribbon he used. These coils were often quite large, usually containing over 1000ft of wire and sometimes weighing over 10lbs. As described by Henry in his papers, these coils were often insulated by wrapping the wires in cotton, dipping them in beeswax, and then painting.
Optimization and intelligent manufacturing are of particular interest and important to improve the severe situation of excessive mass and uneven stress distribution for three branch joint in treelike structures. In this work, the optimal shape of the three-branch joints under vertical load is studied by topology optimization method, and the complex topology optimization Y joint is manufactured using threedimensional (3D) printing technology because it is difficult to produce by conventional manufacturing processes. First, the original model is optimized by using the OptiStruct solver in HyperWorks version 14.0 (64-bit) software, and the element density cloud map and element isosurface map of the model are obtained. Then, the static behaviors of the topology optimization model are compared with those of the hollow spherical joint model which is commonly used in engineering and those of the bionic joint model based on empirical design. Finally, the 3D printing technology is used to produce the topology optimization joint model, the hollow spherical joint model, and the bionic joint model.