MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
Introduction to Buffers - Printable Version
Osborne Acres Community
Introduction to Buffers - Printable Version

+- Osborne Acres Community (https://osborneacres.com)
+-- Forum: My Category (https://osborneacres.com/forumdisplay.php?fid=1)
+--- Forum: My Forum (https://osborneacres.com/forumdisplay.php?fid=2)
+--- Thread: Introduction to Buffers (/showthread.php?tid=861)



Introduction to Buffers - sslpo88dd - 10-12-2021

To effectively maintain a pH range, a buffer must consist of a weak conjugate acid-base pair, meaning either a. a weak acid and its conjugate base, or b. a weak base and its conjugate acid. The use of one or the other will simply depend upon the desired pH when preparing the buffer. For example, the following could function as buffers when together in solution:
Acetic acid (weak organic acid w/ formula CH3COOH) and a salt containing its conjugate base, the acetate anion (CH3COO-), such as sodium acetate (CH3COONa)
Pyridine (weak base w/ formula C5H5N) and a salt containing its conjugate acid, the pyridinium cation (C5H5NH+), such as Pyridinium Chloride.



How are Goggles Made
Goggles are a form of eye protection that is designed to shield the wearer from injuries to the eye due to hazardous conditions in the workplace, home, or other venues such as while playing sports. According to the National Institute for Occupational Safety and Health (NIOSH), approximately 2,000 work-related eye injuries requiring medical treatment are reported in the U.S. every day, the majority of which could have been prevented or been less severe had the proper eye protection been worn. Furthermore, the Department of Labor reports that eye injuries result in an estimated $300 million annually in lost production time, medical expenses, and workers’ compensation.
This article will describe how goggles are made and will discuss the common types of safety eyewear used as Personal Protection Equipment (PPE). You can learn more about other types of PPE in our related guides and articles, a list of which may be found at the end of this article.

That was in March. But by July, Benn and her team had worked out how to possibly provide some needed data on masks, and hopefully help people in Guinea-Bissau. They distributed thousands of locally produced cloth face coverings to people as part of a randomized controlled trial that might be the world’s largest test of masks’ effectiveness against the spread of COVID-19.Astrea Bioseparations Ltd. ('Astrea') has developed a novel affinity chromatography adsorbent, EtoxiClear, that is highly stable, robust and non-toxic, with a high affinity for bacterial endotoxin and low protein binding. EtoxiClear is a cost effective and scalable technology designed for use in endotoxin removal applications including process development, sample/buffer preparation and product polishing steps used during cGMP manufacture of biological molecules.
This application note describes the use of EtoxiClear? to effectively remove endotoxin from a purified immunoglobulin protein solution at both bench scale and process scale; utilising Astrea’s new 100 mm diameter Evolve? Process Column.

A Basic Tool for the Small Clinical Lab

No matter how elementary or advanced, every clinical laboratory has one essential device—a centrifuge. Whether it stands on the benchtop or floor and is refrigerated or not, a laboratory centrifuge fractionates liquid specimens by creating spin-induced high g-forces, and has long been a standard tool for both clinical and research applications. With broad utility, laboratory centrifuges are true workhorses, usually providing trouble-free service for many thousands of cycles over many years of steady use.

Benchtop centrifuge, also known as tabletop, centrifuges have smaller throughputs and cannot provide high-end g-forces compared with floor models, but can accommodate most applications. Tabletop models include low-speed clinical centrifuges used for diagnostics; high-speed instruments for whole-cell harvesting and some nucleic acid applications; multipurpose centrifuges that accept either fixed-arm or swinging bucket rotors; and cell washers, which are highly specialized for washing red blood cells. For those considering a replacement or initial purchase, here is a brief overview of several of the most popular benchtop models used in the small laboratory. All are manufactured by laboratory equipment companies with long-standing reputations for quality and reliability.
Low-Speed, Fixed-Angle Clinical Centrifuge Options