A review on RO membrane technology: Developments and challenges - Printable Version +- Osborne Acres Community (https://osborneacres.com) +-- Forum: My Category (https://osborneacres.com/forumdisplay.php?fid=1) +--- Forum: My Forum (https://osborneacres.com/forumdisplay.php?fid=2) +--- Thread: A review on RO membrane technology: Developments and challenges (/showthread.php?tid=788) |
A review on RO membrane technology: Developments and challenges - nan153131 - 10-08-2021 The material properties of the membrane dominate the performance of a RO process. The emergence of nano-technology and biomimetic RO membranes as the futuristic tools is capable of revolutionizing the entire RO process. Hence the development of nano-structured membranes involving thin film nano-composite membranes, carbon-nanotube membranes and aquaporin-based membranes has been focussed in detail. The problems associated with a RO process such as scaling, brine disposal and boron removal are briefed and the measures adopted to address the same have been discussed. MWCNT synthesized by catalytic chemical vapour deposition13,14 have been widely studied due to their fascinating chemical and physical properties and among all nanocarbon materials, they can be mass-produced for commercially available applications, such as the electrode additives in high performance lithium ion batteries15. Interestingly, while the structure of the fully aromatic PA-based commercial ro membrane derived from m-phenylendiamine (MPD)-trimesoyl chloride (TMC) is constrained due to its stoichiometry; the addition of MWCNT can significantly vary their performance due to their unique features such as dispersability diameter, length, straightness and chemical functionalities, among many others. Therefore, although these past reports acknowledge the key role of MWCNT in aromatic PA nanocomposite membranes, still little attention has been devoted to the mechanisms related to the improvement of flow rate, selectivity and chlorine tolerance2. Carbon nanotubes inducing chlorine tolerance are particularly interesting because chlorine sensitivity has been recognized as a major drawback of PA-based RO membranes16,17. During long-term operation, chlorine is often added as a pre-treatment to reduce algae biofouling18 and is particularly needed for drinking water purification. Moreover, high-concentration short-term exposure to chlorine is also common during domestic nf membrane backwashing. For these reasons, several studies have been carried out and the degradation mechanism of aromatic PA membranes during chlorine exposure is relatively well-known19,20. Recently, our group demonstrated that the addition of MWCNT to rubber can considerably reduce the chlorine-induced degradation of the polymer matrix21. Although the degradation mechanism of rubber by chlorine is different from that of PA, particularly due to the lack of hydrolysis, covalent chlorination is a common problem for both polyamide and rubber. For rubber, we found that MWCNT effectively restricted the adsorption of chlorine within the polymer matrix, thus resulting in a limited exposure of the polymer to this reactive reagent and thereby decreasing the oxidative degradation. For these reasons, we believe MWCNT are not only promising composite fillers with chlorine protective properties, but might also help to provide mechanical robustness to PA-based RO membranes. D- and G- peaks could be observed, indicating a homogenous mixture and a high content of MWCNT, which is not common in these type of nanocomposites, because the MWCNT are prone to aggregation even when loading at low concentrations. Commercial NF membrane exhibited a lower contact angle; however in this case, the presence of wetting additives or a surface treatment is likely responsible for this phenomena. The method used to synthesize the MWCNT·PA nanocomposite relies on the transport of the MWCNT to the organic/aqueous interface during polymerization23. Indeed, the presence of a limited amount of anionic surfactant has been recently reported to improve PA membrane formation, resulting in better performance24. This is most likely due to a reduction of the oil/water interfacial tension, a process that in our case is also promoted by the small amount of surfactant that provides amphiphilicity to the nanotubes It is important to emphasize that we did not used covalent functionalization of MWCNT, in contrast to some previous reports8,11. |