MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
MyBB Internal: One or more warnings occurred. Please contact your administrator for assistance.
Understanding the role of inductors in power electronics - Printable Version
Osborne Acres Community
Understanding the role of inductors in power electronics - Printable Version

+- Osborne Acres Community (https://osborneacres.com)
+-- Forum: My Category (https://osborneacres.com/forumdisplay.php?fid=1)
+--- Forum: My Forum (https://osborneacres.com/forumdisplay.php?fid=2)
+--- Thread: Understanding the role of inductors in power electronics (/showthread.php?tid=1369)



Understanding the role of inductors in power electronics - Koipdd67 - 03-07-2022

Inductors are typically used as energy storage devices in switched-mode power devices to produce DC current. The inductor, which stores energy, supplies energy to the circuit to maintain current flow during “off” switching periods, thus enabling topographies where output voltage exceeds input voltage.

Due to the way they work—by not only altering electric field but the magnetic field around it—many people struggle to understand them.

A coil is a generic name for an electrode in the shape of a spiral. Among the different types of coils, there are coils called “inductors” which are used for electrical applications. Inductors can be further categorized into RF inductors used for signal processing, and power inductors for power supply lines. The power inductors discussed in this section form part of the voltage conversion circuit in a DC-DC converter or other device.

Here we will explain the operation of a power inductor in a DC-DC converter. A power inductor is used in a step-up, step-down, or step-up/step-down circuit to convert a certain voltage to the required voltage. Among those different circuits, it is primarily used in a type of circuit called a “switching regulator.”Transformers are employed for widely varying purposes. For example, a transformer is often used to reduce the voltage of conventional power circuits to operate low-voltage devices and to raise the voltage from electric generators so that electric power can be transmitted over long distances.

Why is the iron core of a transformer laminated?

The secondary consists of many turns of wire wrapped around a core. The number of turns is determined by the desired turns ratio of the current transformer. The primary current of a current transformer is not controlled by the secondary, as it would be in a two-winding potential transformer. The secondary of a current transformer cannot affect the current in the primary, as the load on the feeder determines the primary current.A high voltage transformer is a type of transformer that operates at a high voltage level. High voltage transformers are normally used in high voltage labs for testing purposes. These high voltage transformers are subjected to transient voltages and surges during their normal operation when the insulation under test breaks down.

To withstand these impulse voltages, the insulation of these transformers must be carefully designed. These are usually single-phase core-type transformers.