Welcome, Guest |
You have to register before you can post on our site.
|
Forum Statistics |
» Members: 466
» Latest member: Charvab
» Forum threads: 1,441
» Forum posts: 2,615
Full Statistics
|
Online Users |
There are currently 84 online users. » 0 Member(s) | 82 Guest(s) Bing, Google
|
Latest Threads |
Bedava Free Fire Hesap
Forum: My Forum
Last Post: Tanitim2025
01-01-2023, 01:02 PM
» Replies: 0
» Views: 0
|
Bedava Pubg Mobile Hesap
Forum: My Forum
Last Post: Tanitim2025
01-01-2023, 12:49 PM
» Replies: 0
» Views: 0
|
Bedava Hesaplar
Forum: My Forum
Last Post: Tanitim2025
10-20-2022, 07:51 AM
» Replies: 0
» Views: 0
|
Film izle
Forum: My Forum
Last Post: Tanitim2025
08-27-2022, 05:16 AM
» Replies: 0
» Views: 0
|
Ehliyet Sınav Soruları
Forum: My Forum
Last Post: Tanitim2025
08-14-2022, 03:13 PM
» Replies: 0
» Views: 0
|
Seo Hizmetleri
Forum: My Forum
Last Post: Tanitim2025
05-22-2022, 02:08 PM
» Replies: 0
» Views: 0
|
شراء عقار في تركيا
Forum: My Forum
Last Post: Tanitim2025
04-30-2022, 11:57 AM
» Replies: 0
» Views: 0
|
Propriété à vendre à Turq...
Forum: My Forum
Last Post: Tanitim2025
04-27-2022, 10:50 AM
» Replies: 0
» Views: 0
|
Apple benefits elma yemen...
Forum: My Forum
Last Post: Tanitim2025
04-16-2022, 10:23 PM
» Replies: 0
» Views: 0
|
CLOUD TÜRKIYE Bulutların ...
Forum: My Forum
Last Post: Tanitim2025
04-13-2022, 04:05 PM
» Replies: 0
» Views: 0
|
|
|
Mini excavators: Small size, big popularity |
Posted by: fftty127 - 09-13-2021, 09:12 AM - Forum: My Forum
- No Replies
|
|
Mini excavators are one of the quickest growing equipment types, with the machine’s popularity seemingly ever-increasing. According to data from Off-Highway Research, global sales for the mini excavator were at their highest point ever last year, at over 300,000 units.
There is no shortage of OEMs that are currently working on, or have released electric mini excavators – back in January 2019 Volvo Construction Equipment (Volvo CE) announced that, by mid-2020, it will begin to launch a range of electric compact excavators (EC15 to EC27) and wheeled loaders (L20 to L28) and stop new diesel engine-based development of these models.
Another OEM looking at electric power for this equipment segment is JCB, with the company’s 19C-1E electric mini excavators. The JCB 19C-1E is powered by four lithium-ion batteries, providing 20kWh of energy storage. This is enough for a full working shift for the majority of mini excavator customers on a single charge. The 19C-1E itself is a powerful, compact model with zero exhaust emissions at point of use and one that is considerably quieter than a standard machine.
Small machine is a relatively light and fast mechanical equipment. Like hand-held power tools, concrete vibrator, frog tamper, mini transporter, woodworking machinery, steel machinery, mini dumper, motorized dump truck, welding, etc. are all small machines.
In addition to large machinery and equipment in construction should pay attention to the safe use, to prevent injury, a variety of medium and small machines also have different degrees of danger, must be used in accordance with the safety requirements.
Wood chipper is a kind of special equipment for producing wood chips, wood chipper is also called wood slicer, which is one of the wood processing series equipment.
Trenching machine, such as mini trencher, is one of the main types of construction machinery, a kind of trenching machinery used in earthwork construction, widely used in agricultural water conservancy construction, laying of communication cables and petroleum pipelines, municipal construction and military engineering, etc.
Useful tools and machines in home agriculture also include log splitter, stump grinder, etc.
[b]Operator comfort[/b]Different manufacturers offer various telematics packages with their mini excavators and mini roller; there is no industry standard. Hitachi mini excavators are connected to its remote monitoring system, Global e-Service, and the data can also be accessed via smartphone.
|
|
|
Designing for Injection Molding |
Posted by: fftty127 - 09-13-2021, 09:09 AM - Forum: My Forum
- No Replies
|
|
Injection molding machines perform a wide range of mechanical movements with differing characteristics. Mold opening is a low-force high-speed movement, and mold closing a high-force low-speed movement. Plasticizing involves high torque and low rotational speed, while injection requires high force and medium speed. A source of motive power is needed to drive these movements. The modern injection molding machine is virtually always a self-contained unit incorporating its own power source. Early machine frequency ran from a centralized source serving an entire shop or factory. In this respect, injection molding machines have undergone the same metamorphosis as machine tools.
Oil hydraulics has become firmly established as the drive system for the vast majority of injection molding machines and until recently was almost unchallenged as the power source. Put at its simplest, the injection molding machine contains a reservoir of hydraulic oil which is pumped by an electrically-driven pump at high pressure, typically at up to 2000 psi, to actuating cylinders and motors. High and low pressure linear movements are performed by hydraulic cylinders, and rotary movements for screw drive and other purposes are achieved by hydraulic motors. Hybrid machines, in which the screw is driven by electric motor while the linear movements remain hydraulically powered, are not uncommon.
Injection molding,such as commodity mold, is a prevalent manufacturing process utilized across a variety of applications, from full-scale productions of consumer products to smaller volume production of large components like car body panels.
The process involves a tool or mold, typically constructed from hardened steel or aluminum. The mold is precision machined to form the features of the desired auto part, and thermoplastic material is fed into a heated barrel, mixed and forced into the metal mold cavity where it cools and hardens.
With precise tooling and high-quality results, thin wall injection parts molding produces parts reliably and cost-effectively at large volumes.
Stratasys Direct has decades of experience in all phases of tooling, including part design, tool design, material sciences, post-processing and project management. Capabilities include injection molding, pad printing, silk screening, painting, EMI/RFI shielding and light assembly.
For streamlined operations, we offer Fast Track tooling, an operation that delivers parts in as little as ten days at volumes of 25 to 1,000 units.
Whatever the project, industrial designers, engineers and product designers may face some challenges when designing for plastic injection parts molding. The following details three mistakes designers should avoid for successful injection auto molded parts.
Mold drafts facilitate part removal from the metal thin wall mold. The draft must be in an offset angle that is parallel to the mold opening and closing. The ideal draft angle for a given part depends on the depth of the part in the mold and its required end-use function.
Allowing for as much draft as possible will permit parts to release from the mold easily. Typically, one to two degrees of drafts with an additional 1.5 degrees per 0.25mm depth of texture is sufficient.The mold part line will need to be located in a way that splits the draft in order to minimize it.
Sharp Corners
Sharp corners greatly increase stress concentration, which, when high enough, can lead to part failure. Sharp corners often come about in non-obvious places, such as a boss attached to a surface, or a strengthening rib, and the medical parts.In addition to reducing stresses, the fillet radius provides a streamlined flow path for the molten plastic, resulting in an easier fill of the mold, such as fiberglass mold. At corners, the suggested inside radius is 0.5 times the material thickness and the outside radius is 1.5 times the material thickness. A bigger radius should be used if part design allows.
|
|
|
Selecting Carbon Black for Paints, Coatings and Inks |
Posted by: fftty127 - 09-13-2021, 09:06 AM - Forum: My Forum
- No Replies
|
|
Adding carbon black (CB) particles to elastomeric polymers is essential to the successful industrial use of rubber in many applications, and the mechanical reinforcing effect of CB in rubber has been studied for nearly 100 years. Despite these many decades of investigations, the origin of stiffness enhancement of elastomers from incorporating nanometer-scale CB particles is still debated. It is not universally accepted whether the interactions between polymer chains and CB surfaces are purely physical adsorption or whether some polymer–particle chemical bonds are also introduced in the process of mixing and curing the CB-filled rubber compounds. We review key experimental observations of rubber reinforced with CB, including the finding that heat treatment of CB can greatly reduce the filler reinforcement effect in rubber. The details of the particle morphology and surface chemistry are described to give insights into the nature of the CB–elastomer interfaces. This is followed by a discussion of rubber processing effects, the influence of CB on crosslinking, and various chemical modification approaches that have been employed to improve polymer–filler interactions and reinforcement. Finally, we contrast various models that have been proposed for rationalizing the CB reinforcement of elastomers.
Natural rubber composite has been continuously developed due to its advantages such as a good combination of strength and damping property. Most of carbon black (CB)/Natural Rubber (NR) composite were used as material in tyre industry. The addition of CB in natural rubber is very important to enhance the strength of natural rubber. The particle loading and different structure of CB can affect the composite strength. The effects of CB particle loading of 20, 25 and 30 wt% and the effects of CB structures of N220, N330, N550 and N660 series on tensile property of composite were investigated. The result shows that the tensile strength and elastic modulus of natural rubber/CB composite was higher than pure natural rubber. From SEM observation the agglomeration of CB aggregate increases with particle loading. It leads to decrease of tensile strength of composite as more particle was added. High structure of CB particle i.e. N220 resulted in highest tensile stress. In fact, composite reinforced by N660 CB particle shown a comparable tensile strength and elastic modulus with N220 CB particle. SEM observation shows that agglomeration of CB aggregates of N330 and N550 results in lower stress of associate NR/CB composite.
Carbon black is a highly engineered form of carbon widely used in paints as paint carbon black, coatings and inks to achieve a spectrum ranging from gray to deep black. Over the time, the properties of carbon black pigment have been modified to achieve required properties in the final product, such as increased tinting strength, improved the level of jetness or blue undertone and conductivity.
Explore the different carbon black production processes and the properties to consider while selecting the right carbon black for your formulations.
[b]Properties and End-uses of Carbon Black[/b]
Carbon black is used in many products and articles we use and see around us on a daily basis, such as: rubbers, plastics, coatings, tires, ink carbon clack.
Thus, the requirements for the carbon black are different for each application and influence the specific properties in the final application.
For the coating carbon blacks market, there is a wide range of carbon black grades available. This can make it difficult to choose the most suitable carbon black for your final application. For example, when aiming for automotive paint with a blue undertone, the carbon black of choice will have a high jetness. However, normally these types of carbon black grades are the most difficult to disperse correctly into the desired particle size.
[b]How Carbon Black is Produced?[/b]
The properties of the carbon black are influenced by the method of preparation. The different processes used for channel carbon black production are discussed below.
[b]Recovered Carbon Black from End-of-life Tires[/b]
Recovered carbon black or ®CB is a fast-expanding market. Recovered high purity carbon black is obtained through the pyrolysis process of end-of-life tires. The importance of companies in the production and use of recovered carbon black is three-fold:
The growing global problems arising with end-of-life tires (ELT)
|
|
|
How ice cream is made? |
Posted by: fftty127 - 09-13-2021, 09:03 AM - Forum: My Forum
- No Replies
|
|
With longer, warmer days approaching, the sounds of summer are finally here: the drone of lawn mowers, the thwack of leather on willow and the incessant screams of young children demanding ice cream. To be fair though, there are plenty of adults who can’t pass a gelato shop, park cafe or ice cream van without succumbing to temptation either. There is just something so satisfying and refreshing about an ice cream on a hot day, to stay with a refrigerator, or you can call it refrigerator-freezer.
Ice cream has been around a long time. Some sources mention ice cream-like foods originating in Persia in about 550BC. Some even believe that the Roman Emperor Nero had snow collected from the mountains and mixed with honey and wine to make sorbet. These days we have hundreds of different types of ice cream, from the usual ice cream van favourites to gourmet gelatos and experimental savoury flavours.
On the face of it, the main ingredients of ice cream as we know it are really simple using a cooler: milk, cream and sugar. But just mixing these with some flavouring and putting it in the ice cream freezer is not going to give you a good result. The secret to great ice cream lies in how the mixture is mixed, how quickly it’s frozen and some key extra ingredients that change things like viscosity and freezing point – all important for the right texture and taste.‘To get the right creaminess and stability, the air bubbles in ice cream need to be about 20 µm in size, and as uniform as possible,’ continues Brent. ‘An air bubble that size in water would dissolve quickly – perhaps in a couple of minutes – because air is quite soluble in water. A combination of natural foaming agents (proteins again), the aggregated fat droplets, plus freezing as fast as possible to increase viscosity, helps to trap the bubbles at that small size.’You can use one type of freezer- Curverd Glass Type Ice Cream Chest Freezer.
The rate of freezing has a big effect on the finished ice cream because it affects how large the ice crystals can grow. Large crystals can cause the end product to taste watery or icy, with a coarse, rough texture. The secret to great ice cream is to keep the crystals small. ‘There are two types of freezing,’ explains Ruben, ‘dynamic freezing, where the mixture is moved around at about -6˚C, usually in the ice-cream mixer, and static freezing, which is much colder and doesn’t involve any stirring. Ice crystals will grow in the dynamic freezing stage, but not during static freezing. So, you want to get your ice cream out of the machine as quickly as you can and into a cold chest or blast ice cream freezer at about -18˚C.’
‘If your freezer takes eight hours to get the mixture down to -18˚C then you are going to have more ice crystals in it than if you achieve that in two or four hours,’ Ruben says.
The walls of an ice-cream maker are pretty cold, about -32˚C with a fridge, but the mixture is moving all the time, so it never reaches this temperature. Of course, colder substances, which you’d usually find in the lab and not the kitchen, have also been tried, such as liquid nitrogen. ‘That’s terrific theatre!’ says Ruben. ‘And it creates an incredibly creamy product. With liquid nitrogen you only need one or two minutes in the ice machine before you can transfer to the deep freeze. The rate of crystal nucleation – the birth of ice crystals – is much faster, so there are more of them, but they are much smaller.’
|
|
|
Steel, Glass, and Plastic Bottles: What is the best choice? |
Posted by: fftty127 - 09-13-2021, 09:00 AM - Forum: My Forum
- No Replies
|
|
Some looked at the creative reuse of plastic water bottles by communities in Uganda, the Philippines, and right here in Macomb County, Michigan. Plant pots, salt shakers, lighting fixtures, irrigation, and even walls for a greenhouse were concepts communities came up with. While the articles highlighted some steps international and local communities are taking to curb the plastic problem it also provided steps to help eliminate it from every day use. One of those steps is to simply carry your own reusable bottle, which we are seeing more and more of these days. In fact, traditional public water fountains are becoming equipped to refill personal water bottles as well.
But between steel, plastic and glass, which is the best? The truth of the matter is that there are pros and cons to owning each.
Stainless steel bottles have a number of pros and cons. Typically, they last longer than glass or plastic because they are corrosion resistant, and do not leach chemicals when exposed to sun/heat. They are generally more expensive than plastic, as the cost to produce them is much higher due to being energy intensive. However, stainless steel is 100 percent recyclable. The best option for selecting stainless steel water bottles is food grade #304 or 18/8, which means there are 18 percent chromium and 8 percent nickel. Additional information on stainless steel water bottles can be found online.
Glass is another option when choosing water bottles. Most of us know that just about every beverage tastes better out of a glass bottle or cup, but the downside is that they are breakable and less likely to last a long time compared to plastic or stainless steel. In addition, recycling rate is low and some public places do not allow glass too. However, in addition to tasting great glass does not leach when left in the sun/heat, but the cost of a glass water bottle is generally much higher than our other two options.
Plastic seems to be the most popular reusable water bottle, although glass and stainless are gaining in popularity for the reasons listed here. Plastic water bottles, or water mugs are cheaper to produce than stainless steel and glass, which makes them very attractive for consumers. However, the recycling rate of some plastic water mugs is low and the life cycles are short too. Plastic water bottles often end up in landfills and can take nearly 700 years before they start to decompose. One of the biggest downsides to plastic water bottles is that they leach, whereas glass and stainless steel do not. Consumers with apprehensions over plastics leaching chemicals may want to review the U.S. Food and Drug Administration for more information, such as the use of Bisphenol A (BPA)-a chemical component often found in polycarbonate plastic. Some manufacturers of reusable water bottles do produce products free of this chemical and typically note that on labels or the item itself. In addition, plastics made with BPA will often have a resin code of 7 appearing on the item.
[b]Stainless Steel Water Mug[/b][b]s are Eco-Friendly[/b]
Stainless steel is made out of natural elements to start with, and they can be easily recycled into new products when the time comes. Though plastic bottles are often made from recycled materials and can be recycled themselves, both creating and recycling plastic is less friendly to the environment than stainless steel production and recycling.
[b]Stainless Steel Water Bottles are Much More Durable than Plastic[/b]
If you’ve ever used a plastic water bottle, you know how flimsy they can be. Some plastic water bottles are meant for one-time use and crush easily. Others are made to be used multiple times. However, those can melt when washed in the dishwasher. Even if you run over a stainless steel water bottle with your truck, it will survive.
Stainless steel bottles can be used under virtually any condition. Because of their versatility and durability, stainless steel water bottles are the bottles of choice for many athletes and adventurers, also are some glass water mugs.
[b]You Can Wash Stainless Steel Water Bottles in the Dishwasher[/b]
Maintain sanitation by regularly washing your stainless steel water bottle in the dishwasher. Stainless steel is completely dishwasher safe, unlike plastic water bottles which could melt or lose their shape. Regular washing eliminates germs that accumulate after usage.
|
|
|
Why Should You Use a Proper Wine Glass for Serving Wine? |
Posted by: fftty127 - 09-13-2021, 08:58 AM - Forum: My Forum
- No Replies
|
|
A large part of enjoying wine lies in savoring its aroma. The wine glass has to gather the wine’s aroma so you can savor it when you drink.
If you use a regular mug and fill it to the brim, all the characteristic vapors of the wine will be gone by the time you start to sip.
But, there’s more to it than just enjoying the wine’s aroma.
But it was Claus Riedel in the 20th century, who was the first to acknowledge the correlation between the wine’s taste and the wine glass shape. He launched the first series of glasses designed to suit a wine’s character.
[b]1. Foot[/b]
This is the flat base section of the glass that will hold the glass upright on your dining table. A small foot can make the champagne glass imbalanced, and the glass will easily topple on your dining tables. Too large a foot might get stuck under your platters and flatware or tableware.
[b]2. Crystal[/b]
Crystal wine glasses contain 2-30% of added minerals, which is its primary difference from regular whiskey glasses. Those minerals could be lead, magnesium, or zinc, allowing the crystal to be spun much thinner than glass but still retain structural strength.
Usually, in restaurants, a tumbler glass would be around 5oz (~150ml). This portions a 750ml bottle of wine into five servings.
For wine tastings, the standard is around 2oz, which is enough to experience the wine’s aroma and flavor without being affected by the alcohol too fast.
Dessert wine servings are around 2oz, too, as these wines are much sweeter and have more alcohol than other wines.
[b]A. Bordeaux glass[/b]
This tall glass with wine decanter is meant for bold, full bodied red wines like Cabernet Sauvignon, Cabernet Franc, Merlot, or Bordeaux Blends.
The glass is tall, but the bowl isn’t quite as large. The bowl’s height creates more space between the wine and nose, allowing room for ethanol vapors to escape, letting you get more of the wine’s aroma and less alcohol vapors.
Some Bordeaux wine glasses to consider:
Zalto Denk Art Bordeaux Glass with glass charger plate
Schott Zwiesel Tritan Pure Bordeaux Glass
[b]B. Standard (Medium-bodied) wine glass[/b]
This is an excellent choice for medium- to full-bodied red wine, like Syrah or Malbec. The smaller opening will soften the spicy expression of some of these wines as it hits your tongue, but it keeps the aroma in the shot glass.
[b]C. Burgundy (Bourgogne) glass[/b]
The Burgundy glass is designed for light, delicate red wine like Montrachet. The broad bowl creates space for aromas to collect, and a shorter lip directs the wine to the tip of the tongue so that you can taste more of its subtle flavors. The Pinot Noir glass is an example of the Burgundy glass. Also, there is bear glass.
|
|
|
Which type of PVC sheet do I need for my application? |
Posted by: fftty127 - 09-13-2021, 08:54 AM - Forum: My Forum
- No Replies
|
|
What is PVC (PolyVinyl Chloride)?
Polyvinyl Chloride (PVC or Vinyl) is an economical and versatile thermoplastic polymer widely used in building and construction industry to produce door and window profiles, pipes (drinking and wastewater), wire and cable insulation, medical devices, etc. It is the world’s third largest thermoplastic material by volume after polyethylene and polypropylene.
It is a white, brittle solid material available in powder form or granules. Due to its versatile properties, such as lightweight, durable, low cost and easy processability, PVC sheet is now replacing traditional building materials like wood, metal, concrete, rubber, ceramics, etc. in several applications.
Basic Forms of PVC(including PVC rod)
Polyvinyl Chloride is widely available in two broad categories: Flexible and Rigid. But, there are more types like CPVC, PVC-O and PVC-M.
Polyvinyl Chloride (PVC) is one of the most widely used polymers in the world. Due to its versatile nature, PVC, or other plastic rod, is used extensively across a broad range of industrial, technical and everyday applications including widespread use in building, transport, packaging, electrical/electronic and healthcare applications.
PVC, including soft PVC sheet roll, is a very durable and long lasting material which can be used in a variety of applications, either rigid or flexible, white or black and a wide range of colours in between.
The essential raw materials for PVC are derived from salt and oil. The electrolysis of salt water produces chlorine, which is combined with ethylene (obtained from oil) to form vinyl chloride monomer (VCM). Molecules of VCM are polymerised to form PVC resin, to which appropriate additives are incorporated to make a customised PVC compound .
The PVC production process consists of 5 steps:
The extraction of salt and hydrocarbon resources
The production of ethylene and chlorine from these resources
The combination of chlorine and ethylene to make the vinyl chloride monomer (VCM)
The polymerisation of VCM to make poly-vinyl-chloride (PVC)
The blending of PVC polymer with other materials to produce different formulations providing a wide range of physical properties.
PVC sheet, PE sheet and PP sheet have excellent corrosion resistance and weather resistance. The working temp is 33 deg F to 160 deg F. and the forming temperatures of 245 deg F. It is good electrical and thermal insulator and has a self-extinguishing per UL Test 94. PVC applications are almost unlimited. It's the most widely used member of the vinyl family. It is excellent when used for corrosion-resistant tanks, ducts, fume hoods, and pipe. Ideal for self-supporting tanks, fabricated parts, tank linings, and spacers. It is not UV stabilized and has a tolerance of +or 10%. Not FDA approved materials. Colors available: Gray PVC Type 1 Sheet, White PVC, Clear PVC.
|
|
|
What Is a Brake Caliper |
Posted by: fftty127 - 09-13-2021, 08:51 AM - Forum: My Forum
- No Replies
|
|
If your car is equipped with disc brakes, brake calipers are critical to slowing and stopping your car. Here's what you need to know.
The brake caliper plays a central role in a disc-brake system and has two functions. First, it acts either as a bracket to support the brake pads on either side of the rotor or to support the caliper bracket itself — there are other designs, but these are the two most common. Second, it uses pistons to convert pressure exerted on the brake fluid by the master cylinder into friction on the rotor.
In simple terms, a brake caliper’s purpose is to squeeze the brake pads against the rotor to stop the car. There are two main types of calipers, a single piston and a dual piston. Most front calipers are dual piston but many cars use single piston calipers on the rear, where less braking force is needed.
Stepping on the brake pedal forces the master cylinder piston forward, compressing the brake fluid. The brake fluid forces the brake caliper pistons toward the rotors, pinching the rotors in between the brake pads, which creates friction and slows the vehicle.
When Brake Calipers Go Bad
In general, brake pads and rotors wear out and need replacement far more often than calipers. A leading cause for damaged calipers, however, stems from driving a vehicle on worn-out pads or warped rotors. Both prevent the system from dissipating the heat of friction, as they’re designed to do, which can damage the calipers.
Regardless of the type of support, it is designed to have parts that withstand increased wear. The pads and discs we have not considered because they are considered consumables. As for the support, the return movement of the piston is provided by a rubber sleeve. When the driver depresses the brake pedal, the piston comes out of the body and deforms the brake sleeve kit, when the pedal is released, the cuff tends to present a starting position and drags the piston.
The brake system includes brake calipers, brake discs, brake pads(including brake pad fitting kits), steel pipes, brake fluid, etc. There are also brake rubber dust cover kits.
|
|
|
What uses does rubbing alcohol have? |
Posted by: fftty127 - 09-13-2021, 08:44 AM - Forum: My Forum
- No Replies
|
|
[b]Wound Dressings[/b]
Wound, whether it is a minor cut or a major incision, it is important to care for it properly, part of this process includes wound dressing. Dressing is designed to be in contact with the wound, which is different from a bandage that holds the dressing in place. Historically, wet-to-dry dressings have been used extensively for wounds requiring debridement. In 1600 BC, Linen strips soaked in oil or grease covered with plasters was used to occlude wounds. Clay tablets were used for the treatment of wounds by Mesopotamian origin from about 2500 BCE. They cleaned wounds with water or milk prior to dressing with honey or resin. Wine or vinegar usage for cleaning the wounds with honey, oil and wine as further treatment was followed by Hippocrates of ancient Greece in 460- 370 BCE. They used wool boiled in water or wine as a bandage. There was a major breakthrough in the antiseptic technique during the 19th century, antibiotics were introduced to control infections and decrease mortality. Modern wound dressing arrival was in 20th century.
When the wound is closed with dressing, such as transparent film dressing, they are continuously exposed to proteinases, chemotactic, complement & growth factors, which is lost in the wound exposed. So during late 20th century, production of occlusive dressing began to protect and provide moist environment to wound. These dressings helps in faster re-epithelialization, collagen synthesis, promotes angiogenesis by creating hypoxia to the wound bed and decreases wound bed pH which leads to decrease in the wound infection. Woven absorbent cotton gauze was used in 1891. Until the mid 1900’s, it was firmly believed that wounds healed more quickly if kept dry and uncovered whereas ‘closed wounds heal more quickly than open wound’ written in an Egyptian medical text -Edwin smith surgical papyrus in 1615 BC. Oscar Gilje in 1948 describes moist chamber effect for healing ulcers. In the mid 1980’s, the first modern wound dressing were introduced which delivered important characteristics providing moisture and absorbing fluids (e.g. polyurethane foams, hydrocolloids, iodine-containing gels). During the mid 1990’s, synthetic wound dressings expanded into various group of products which includes hydrogels, hydrocolloids, alginates, synthetic foam dressing, silicone meshes, tissue adhesives, vapor-permeable adhesive films and silver/collagen containing dressing.
[b]Traditional wound dressing[/b]
Traditional wound dressing products including gauze, lint, plasters, bandages (natural or synthetic) and cotton wool are dry and used as primary or secondary dressings for protecting the wound from contaminations. Gauze dressings made out of woven and non woven fibres of cotton, rayon, polyesters afford some sort of protection against bacterial infection. Some sterile gauze pads are used for absorbing exudates and fluid in an open wound with the help of fibres in these dressings. These dressings require frequent changing to protect from maceration of healthy tissues. Gauze dressings are less cost effective. Due to excessive wound drainage, dressings, including foam dressing, become moistened and tend to become adherent to the wound making it painful when removing. Bandages made out of natural cotton wool and cellulose or synthetic bandages made out of polyamide materials perform different functions. For instance, cotton bandages are used for retention of light dressings with non woven dressing, high compression bandages and short stretch compression bandages provide sustained compression in case of venous ulcers. Xeroform™ (non-occlusive dressing) is petrolatum gauze with 3% of Bismuth tribromophenate used for non-exudating to slight exudating wounds. Tulle dressings such as Bactigras, Jelonet, Paratulle are some examples of tulle dressings commercially available as impregnated dressings with paraffin and suitable for superficial clean wound. Generally traditional dressings are indicated for the clean and dry wounds with mild exudate levels or used as secondary dressings. Since traditional dressings fail to provide moist environment to the wound they have been replaced by modern dressings with more advanced formulations.
[b]Modern and advanced wound dressing[/b]
Modern wound dressing have been developed to facilitate the function of the wound rather than just to cover it. These dressings are focused to keep the wound from dehydration and promote healing. Based on the cause and type of wound, numerous products are available in the market, making the selection a very difficult task. Modern wound dressings, transparent dressing with absorbent pad, are usually based on synthetic polymers and are classified as passive, interactive and bioactive products. Passive products are non-occlusive, such as gauze and tulle dressings, used to cover the wound to restore its function underneath. Interactive dressings are semi-occlusive or occlusive, available in the forms of films, foam, hydrogel and hydrocolloids. These dressings act as a barrier against penetration of bacteria to the wound environment.
What uses does rubbing alcohol have?
Rubbing alcohol is a common household chemical. It has several potential uses in personal care, as well as in general household cleaning.
However, the incorrect use of rubbing alcohol can cause serious side effects, including skin irritation and poisoning.
In this article, we list some common uses for rubbing alcohol. We also outline some situations in which a person should avoid using this chemical.
Common uses for rubbing alcohol, or alcohol pad, include:
Rubbing alcohol can help kill odor-causing bacteria, and it can be used in woundcare dressing, or hydrocolloid dressing. A person can apply rubbing alcohol under the armpits to help eliminate body odors.
However, they should avoid applying rubbing alcohol soon after shaving, as this will cause stinging.
|
|
|
What Are The Difference Between PVC Wallpaper And Non-Woven Wallpaper? |
Posted by: toe227 - 09-13-2021, 06:52 AM - Forum: My Forum
- No Replies
|
|
Nowadays most of the people are using wallpapers to decorate their home, flats, offices. Houses with wallpapers look good and give a good texture. As modern decoration companies are paying more attention to personal styles, so more people are started to using wallpaper for decorating their favourite places.
The employment of wallpapers is rising in household and offices to break the standard of using paint as a decorative material. Modern young people need more attractive visual kind of design.
Wallpapers are not only attractive, but they also satisfy the requirement of environment safety.
Non woven wallpapers and PVC wallpapers are the most used wallpapers for home decoration, so which wallpaper is better depends on their material and other terms.
What Is PVC Wallpaper?
PVC or Polyvinyl Chloride are embossed to provide a luxurious effect. PVC metallic wallpaper is durable and easily washable. A comparison with non-woven wallpapers shows that the installation and removal of non-woven wallpapers are much more difficult.
The main characteristics of PVC wallpapers are:
- They are very strong and designer wallpapers
- They have water resistance properties.
- Affordable than non-woven wallpapers
- PVC wallpapers are scratch resistance.
What Is Non-Woven Wallpaper?
on-woven wallpaper is consists of natural plant fiber and finished with high-quality natural woods.
These wallpapers are made of completely different material due to that- Non-woven wallpapers are environment friendly.
- The characteristics of non-woven wallpapers are:
- They are lightweight.
- Non woven wallpapers are very flexible and also very easy to install and remove.
- They have sound proofing and heat proofing feature. Because of this, they are applicable to any kind of room
Difference Between PVC Wallpaper And Non-Woven Wallpaper:- Non-woven wallpapers are one kind of natural fibre, which is environment friendly with the feature of moisture resistance, air permeability and lightweight. In present non-woven is the best environment friendly decorative material. This type of wallpaper will give you visual comfortability and it has the function of sound resistance and ventilation, which can make non-woven wallpaper first choice for top-end decoration wallpaper. It is most suitable for bedrooms.
- Where PVC modern wallpaper is mainly composed of polyvinyl chloride resin and high molecular polymers.
- In terms of price, non-woven wallpapers are more costly as they have more advance feature and environment friendly.
- PVC wallpaper is cheaper because their environmental protection is not so good.
The difference between PVC wallpapers and nonwoven wallpapers is also comparatively large, and they also have distinct advantages as per their functions so you can select your wallpaper as you need.
It is difficult to distinguish between PVC wallpaper and non-woven stripe line wallpaper. One interesting fact is, PVC can be made into the non-woven fabric, but it is tough to differentiate. PVC is more important than non-woven wallpaper, and the texture of PVC wallpaper is hard.
If you want to install wallpaper for your home, then non-woven is better than fabric because non-woven wallpaper has better ventilation. On the other hand, PVC is used in hotels. It is also called engineering wallpaper.
If you are confused to choose PVC wallpaper or non-woven wallpaper, get in touch with us our professional will guide you and help you choose the right wallpaper as per your requirement.
|
|
|
|